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ABSTRACT: The satellite observational data assimilation community requires consistent hydrometer descriptions}including
mass–size relation and particle size distribution}to be used in both the forecast model and observation operator. We develop a
microphysics-scheme-consistent snow and graupel single-scattering property database to meet this requirement. In this database,
snowflakes are modeled as a mixture of small column and large aggregated ice particles, the mixing ratios of which may be ad-
justed to satisfy a given mass–size relation. Snow single-scattering properties are computed for four different mass–size relations.
Subsequently, the snow description in the Thompson microphysics scheme is used as an example to demonstrate how micro-
physics-scheme-consistent snow bulk optical properties are derived. The Thompson-scheme-consistent snow bulk optical prop-
erties are added to the Community Radiative Transfer Model (CRTM), version 2.4.0. With CloudSat Cloud Profiling Radar
(CPR) snow and liquid precipitation retrievals as the inputs, CRTM simulations are performed over global oceans and com-
pared with four collocated Global Precipitation Measurement (GPM) Microwave Imager (GMI) high-frequency channel obser-
vations. The CRTM simulated brightness temperatures show agreement with the GMI observed brightness temperatures in
cases of light-to-moderate precipitation over extratropical and polar ice-free oceans, with root-mean-square errors of 4.3, 13.0,
1.8, and 3.3 K in the 166-GHz (vertical polarization), 166-GHz (horizontal polarization), 183 6 3-GHz (vertical polarization),
and 183 6 7-GHz (vertical polarization) channels, respectively. The result demonstrates the potential of using the newly devel-
oped microphysics-scheme-consistent snow optical parameterization in data assimilation applications.

KEYWORDS: Atmosphere; Databases; Microwave observations; Radars/radar observations; Satellite observations;
Data assimilation

1. Introduction

Satellite observations are often used to evaluate large-scale
and regional model simulations (e.g., Dolinar et al. 2015;
Huang et al. 2014; Jiang et al. 2012; Masunaga et al. 2008; Qu
et al. 2018; Su et al. 2013; Vignesh et al. 2020; Zhou et al.
2007). Microwave (MW) radars and radiometers can detect
large hydrometers in the atmosphere, and hence are used to
examine model cloud and precipitation simulations. Zhou
et al. (2007) compared Tropical Rainfall Measuring Mission
(TRMM; Kummerow et al. 2000) Microwave Imager (TMI)
and Precipitation Radar (PR) (Kummerow et al. 1998) hy-
drometer profile measurements during the South China Sea
Monsoon Experiment (SCSMEX) field campaign with God-
dard Cumulus Ensemble (GCE) model simulations. Masunaga
et al. (2008) compared TRMM PR and CloudSat (Stephens
et al. 2002) Cloud Profiling Radar (CPR; Tanelli et al. 2008)
measurements with a global cloud-resolving model simulation
of a Madden–Julian oscillation (MJO; Madden and Julian
1971, 1972) event. Eliasson et al. (2011) compared the National
Environmental Satellite Data and Information Service
(NESDIS) Microwave Surface and Precipitation Products Sys-
tem (MSPPS) and CloudSat CPR monthly mean ice water path

(IWP) retrievals (Austin et al. 2009; Ferraro et al. 2005) with
climate model simulations. In addition to comparisons of MW
cloud and precipitation retrievals and model simulations,
model simulated atmospheric states are linked to spaceborne
MW sensor radiance measurements through radiative transfer
calculations (e.g., Masunaga et al. 2010; Matsui et al. 2013).
The Goddard profiling algorithm (GPROF; Kummerow et al.
1996, 2001) linked simulated vertical distributions of hydrome-
teors to satellite MW brightness temperature (BT) measure-
ments. Based on the Goddard Satellite Data Simulation Unit
(SDSU; Matsui et al. 2009, 2013), radiance measurements from
different spaceborne instruments can be directly used to evalu-
ate regional Earth system model simulations (Matsui et al.
2014). With the simulated atmospheric state of a heavy-snow
event over France based on a mesoscale cloud model, Galligani
et al. (2015) computed MW BTs using the Atmospheric Radia-
tive Transfer Simulator (ARTS; Eriksson et al. 2011) and com-
pared the results with Microwave Humidity Sounder (MHS)
measurements.

Several weather forecasting centers have operationally as-
similated satellite radiance measurements in all-sky condi-
tions (Bauer et al. 2010, 2011; Geer et al. 2010, 2017, 2018;
Zhu et al. 2016). The Radiative Transfer Model (RTM) for
Television Infrared Observation Satellite (TIROS) Operational
Vertical Sounder (RTTOV; Saunders et al. 2018) and the Com-
munity Radiative Transfer Model (CRTM; Han et al. 2006)Corresponding author: Tong Ren, tr7585@tamu.edu
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are two RTMs adopted by weather forecasting centers
for data assimilation applications. Both models have been
extensively used to simulate satellite infrared (IR) and MW
signals (e.g., Greenwald et al. 2016; Lu et al. 2020; Otkin et al.
2009). Previous studies made efforts to improve the two
RTMs, such as improving cloud overlap treatment (Geer et al.
2009) and representation of frozen hydrometeor optical prop-
erties (Geer and Baordo 2014; Yi et al. 2016). However, Geer
et al. (2018) identified three issues in representing clouds and
precipitation in all-sky satellite data assimilation. First, hy-
drometeor variables are not always available to the radiative
transfer operator. In addition, inconsistent assumptions (e.g.,
particle size distributions) are often made in the forecast
model and in the radiative transfer operator. Moreover, im-
portant cloud and precipitation representation details (e.g.,
particle orientation) needed in radiative transfer computa-
tions remain poorly known, and for example not predicted by
models. Furthermore, it is sometimes unclear how the param-
eterized hydrometer bulk optical properties are computed in
a radiative transfer operator; for instance, no document has
been archived as to the computational details of frozen hy-
drometer bulk optical properties in the CRTM (Sieron et al.
2017; Stegmann et al. 2018).

Previous studies pointed out the drawbacks of modeling
frozen hydrometeors as spheres in computing their optical
properties in the MW region (e.g., Kim et al. 2007; Kulie et al.
2010; Leinonen et al. 2012; Matrosov 2007). Geer and Baordo

(2014) suggested that spherical frozen hydrometers produce
overly high scattering in 30–50 GHz and overly low scattering
in 150–183 GHz. Since the inadequacy of the spherical model
was realized and more computational resources became avail-
able, computations of frozen hydrometer single-scattering
properties have focused on nonspherical particles (Kim 2006;
Liu 2004; Petty and Huang 2010) and databases of a variety of
nonspherical ice particle shapes have been developed. Table 1
documents some databases that are frequently applied in
snow or graupel studies. More comprehensive surveys of the
databases can be found in Eriksson et al. (2018) and Tyynelä
and von Lerber (2019). The database of Liu (2008b) in
Table 1 was later extended to include an aggregate of 6-branch
bullet-rosettes (Honeyager et al. 2016; Nowell et al. 2013). The
single-scattering properties of the 6-branch bullet-rosette
(6BR) and dendrite in Liu (2008b) were used to simulate MW
radiometer signals for snowfall events (Skofronick-Jackson
and Johnson 2011). The databases of Matrosov (2007), Liu
(2008b), and Hong (2007a,b) have been used in ground-based
and spaceborne millimeter-wavelength radar snow retrievals
(Kulie et al. 2010; Liu 2008a; Matrosov and Battaglia 2009;
Matrosov et al. 2008). The database of Hong (2007a,b) was later
extended to more frequencies between 100 and 1000 GHz
(Hong et al. 2009b) and compared with the Liu (2008b) data-
base in Eriksson et al. (2015). The scattering properties of fro-
zen aggregate particles in Kuo et al. (2016) have been tested
using aircraft measurements (Olson et al. 2016) and applied in

TABLE 1. Example databases of nonspherical ice particle single-scattering properties frequently used in snow or graupel studies.

Database Particle shape Frequencies Temperature

Matrosov (2007) Oblate spheroids resembling aggregates and
single dendrite crystals

Ka (34.6 GHz) and W (94 GHz) bands 258C

Hong (2007a,b) Column, hollow, plate, 6-branch bullet
rosette, aggregate of columns, and droxtal

5 frequencies from 89 to 340 GHz 2308C

Liu (2008b) Columns, plates, bullet-rosettes, sectors, and
dendrites

10 frequencies from 13.4 to 340 GHz 2408, 2308, 2208,
2108, and 08C

Kuo et al. (2016) Dendrites, needles, plates, and their
aggregates

Global Precipitation Measurement
mission (GPM; Hou et al. 2014)
Microwave Imager (GMI) and dual-
frequency precipitation radar (DPR)
frequencies

Unknown

Lu et al. (2016) Aggregates, branched planar crystals,
plates, columns, and conical graupel

X (9.4 GHz), Ku (13.4 GHz),
Ka (35.7 GHz), and W (94 GHz) bands

08C

Ding et al. (2017b) 10-plate aggregate, 5-plate aggregate,
8-column aggregate, solid hexagonal
column, hollow hexagonal column,
hexagonal plate, solid bullet rosette,
hollow bullet rosette, droxtal, oblate
spheroid, and prolate spheroid

41 frequencies from 1 to 874 GHz 160, 200, 230, and
270 K

Eriksson et al. (2018) 16 single cystal shapes, including plates,
columns, Icosahedral nonhydrostatic
GCM (ICON) cloud ice, Global
Environmental Multiscale Model (GEM)
cloud ice, bullet rosettes, and sector;
13 aggregate shapes, including Evans
et al. (2012) snow, Tyynelä et al. (2011)
dendrite, column, block, and plate
aggregates, ICON and GEM hail, snow,
and graupel, and spherical graupel

34 frequencies from 1 to 886.4 GHz 190, 230, and
270 K
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the Global Precipitation Measurement (GPM) Dual-Frequency
Precipitation Radar (DPR) snow retrievals (Chase et al. 2021).
With the aggregate particle radiative properties at submillime-
ter and millimeter wavelengths (Ding et al. 2017b) and infrared
(IR) wavelengths (Yang et al. 2013), Coy et al. (2020) studied
the possibility of retrieving cirrus ice water content and mean
particle size using both spaceborne submillimeter/millimeter
and IR instruments. Different frozen hydrometeor models in
the database of Eriksson et al. (2018) were tested with aircraft
and satellite passive and active observations (Ekelund et al.
2020; Fox 2020; Fox et al. 2019). Based on the Liu (2008b) and
Eriksson et al. (2018) databases, hydrometeor bulk optical
properties have been derived for the RTTOV applications
(Geer 2021; Geer et al. 2021).

Previous studies suggested that consistent ice optical model
and size distributions be used in microphysics and radiation
parameterization schemes (Baran 2012; Baran et al. 2014;
Thompson et al. 2016). With the focus of the data assimilation
community turning to all-sky data assimilation, it becomes im-
portant to develop microphysics-scheme consistent frozen hy-
drometeor bulk optical parameterizations (e.g., Sieron et al.
2017, 2018). With the particle size distribution from cloud mi-
crophysics schemes, Sieron et al. (2018) replaced the CRTM
snow optical parameterization by the bulk optical properties
of nonspherical particles in Liu (2008b) and compared BT
simulations with satellite observations during the rapid
intensification stage of a destructive hurricane. With the
microphysics-scheme consistent snow optical parameteriza-
tion added to CRTM (Liu 2008b), Zhang et al. (2021) showed
improved forecasts of the track, intensity, and rainfall of Hur-
ricane Harvey (2017) via assimilating all-sky MW radiances.
As stated in Sieron et al. (2017), the motivation of developing
microphysics-scheme consistent hydrometer optical parameter-
izations is to facilitate a more meaningful constraint of space-
borne radiometric observations on the simulated atmospheric
state. Inspired by these recent studies, through the design of
snow and graupel shapes, we develop new microphysics-scheme
consistent snow and graupel optical models for data assimilation
and remote sensing applications. Section 2 describes the snow
and graupel models and the incorporation of the snow bulk op-
tical parameterization into the CRTM. Section 3 introduces the
data and methods used to test the snow parameterization. The
test results are presented in section 4, followed by conclusions
in section 5.

2. Snow and graupel optical models

Many all-sky radiative transfer simulation studies have achieved
the consistency between single-scattering and microphysical
properties with different approaches. Some individual snow
shapes in the ARTS database (Eriksson et al. 2018) are specifi-
cally designed to have properties that are consistent with cer-
tain microphysics schemes. Previous studies have suggested
different strategies of computing snow bulk optical properties,
if a snow mass (m)–size (or maximum dimension, D) relation
of interest cannot be represented by any snow shape in exist-
ing databases. Geer and Baordo (2014) calculate snow bulk
optical properties using a snow particle size distribution whose

free parameter is adjusted to match a given snow water con-
tent (SWC). Sieron et al. (2018) calculate snow bulk optical
properties using a snow particle size distribution adjusted to
preserve a given snow particle mass distribution. Ori et al.
(2021) simulate W-band radar reflectivity with the Liu (2008b)
backscattering cross sections of individual snow particles of
sizeD being scaled by the ratio of a given squared mass to that
in the Liu (2008b) database.

Vapor deposition and aggregation are the two main mecha-
nisms of snow growth (Matrosov and Battaglia 2009). Previ-
ous studies recommended that a mixture of small pristine ice
particles and large snow aggregates be adopted for more real-
istic snow radiative scattering calculations (e.g., Kneifel et al.
2011). The mixture of two habits was assumed in the develop-
ment of a cloud ice optical model that best fits aircraft ice wa-
ter content measurements (Liu et al. 2014; Loeb et al. 2018),
and the cloud ice model also showed best agreement with the
Thompson microphysics scheme (Thompson and Eidhammer
2014; Thompson et al. 2004, 2008) m–D relation (Ren et al.
2021). Based on the previous mixture model recommenda-
tion, in our snow model, snowflake particles are designed to
be a mixture of surface-roughened hexagon columns with as-
pect ratio 1 and dendrite aggregates (Fig. 1a). The dendrite
aggregate is generated by randomly attaching 20 dendrites
with varying sizes and height–diameter ratios. The diameter
Dd of each of the 20 dendrites is arbitrarily specified between
0.05 and 0.35 cm. The height Hd of each dendrite is deter-
mined from the relation Hd 5 9:963 1023D0:415

d (Pruppacher
and Klett 2010). Then, the dendrite aggregate dimension is
uniformly scaled to the simulated sizes, resulting in an m–D
relation of m 5 4.537D3, where m is in kilograms and D is in
meters. Both columns and aggregates are assumed to be ran-
domly oriented with an equal number of mirror-imaging ori-
entations. Under this orientation condition, the scattering
phase matrix has six independent nonzero elements (van de
Hulst 1957). While particle orientations are not of interest in
some cloud microphysics schemes, satellite polarimetric sig-
nals over ice cloud scenes are sensitive to ice particle orienta-
tions (e.g., Barlakas et al. 2021; Brath et al. 2020; Gong and
Wu 2017). Because our snow model assumes randomly ori-
ented particles, the impact of ice particle orientations on snow
polarimetric properties is not considered in our model. The
height of the column and the diameter of the circumscribed
sphere of the aggregate are taken as the maximum dimensions
of the two habits. The mixing ratios of columns and aggre-
gates can be adjusted to fit the mixture of the two habits to
m–D relations in microphysics schemes in a size range.

Let N(D) be a snow particle size number distribution. The
N(D) represents the total number of particles per unit volume in
the size interval betweenD andD1 dD, where the total number
means the sum of the number of column particles and the number
of dendrite aggregate particles. Let f1(D) and 1 2 f1(D) be the
number concentration mixing ratios of the columns and dendrite
aggregates, respectively; then N(D)f1(D) and N(D)[1 2 f1(D)]
represent the particle size distributions of the two individual hab-
its. Given anm–D relationm5 h(D) of interest, the mixing ratio
f1(D) can be adjusted to make the mixture of the two habits have
the m–D relation in a size range. Let m1(D) and m2(D) be the
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masses of the two habits of size D. We seek a mixing ratio f1(D)
such that

f1(D)m1(D) 1 [1 2 f1(D)]m2(D) 5 h(D): (1)

However, solving f1(D) with Eq. (1) always results in f1(D) . 1
in some size interval D # D1 and f1(D) , 0 in some size inter-
val D $ D2. To avoid an unrealistic solution for f1(D), we set
f1(D) 5 1 when f1(D) . 1 and f1(D) 5 0 when f1(D) , 0. For
example, the following snow m–D relation of Cox (1988) is
used in the Thompson microphysics scheme:

m 5 0:069D2, (2)

where m is in kilograms and D is in meters. With a mixture of
the columns and aggregates illustrated in Fig. 1a, snowflakes
have the m–D relation in Eq. (2) in the size range 0.3 , D ,

15.2 mm. Snow particles are only columns when D # 0.3 mm
and only aggregates when D $ 15.2 mm. In the size interval
D1 , D,D2, snow particles consist of both columns and aggre-
gates; assuming that snow particles are independent scatterers,
we calculate the mean single-scattering properties}including
ice portion volume V(D), projected area averaged over all parti-
cle random orientations A(D), extinction efficiency Qext(D),
single-scattering albedo v′(D), asymmetry factor g′(D), and
scattering phase function p′(D)}by averaging the properties of
the two habits with the weights of f1(D) and 1 2 f1(D). Note
that any property that is not a linear combination of the prop-
erty of individual ice particles}such as aggregation, riming rate,
and fall speed}cannot be properly described by a mixture
model, although a mixture snow model can be adjusted to
achieve a given m–D relation. Some snow habits in the ARTS
database are specifically designed to be consistent with certain
microphysics schemes to overcome the problem. It should also
be noted that if a microphysics scheme strictly requires that the
assumed m–D relation applies to every single particle, then a
mixture model should not be used (Sieron et al. 2017, 2018).

For the graupel model presented here, particles are as-
sumed to be randomly oriented cones (Fig. 1b), the mathe-
matical description of which is given by Wang (1982).

In this work, a synergistic combination (Yang et al. 2019) of
the Invariant Imbedding T-Matrix (II-TM) method (Bi and
Yang 2014; Johnson 1988) and the Improved Geometric Op-
tics Method (IGOM; Yang and Liou 1996) are used to com-
pute the snow and graupel single-scattering properties from
the ultraviolet (UV) to IR regions with the ice refractive
index at 266 K (Warren and Brandt 2008) and MW region
with the ice refractive indices at 5 different temperatures
(Iwabuchi and Yang 2011). Table 2 documents the dimen-
sions of the snow and graupel single-scattering property data-
base. The UV-to-IR region includes 470 wavelengths from
0.2 to 200 mm. There are 70 frequencies available in the MW re-
gion in our snow and graupel database.1 The II-TM method and
IGOM apply to small and large size parameters, respectively. The
radiative properties of graupel are sensitive to its bulk density
(Tang et al. 2017), and hence single-scattering computations are
performed for graupel particles that have different values of mass
ratio defined as the ratio of the mass density of a graupel particle
to that of solid ice. This study focuses on testing the microphysics-
scheme consistent snow bulk optical parameterization.

Passive and active observables are sensitive to the size mea-
sure of solid hydrometeor particles (Johnson et al. 2012). The
bulk optical properties}including the mass extinction coeffi-
cient bext,m, single-scattering albedo v, asymmetry factor g,
and phase function p}can be parameterized in terms of SWC
and a certain measure of the mean size of snowflakes. The ef-
fective radius (reff; Foot 1988) in Eq. (3) is an optimal mean

(a) Snow (b) Graupel

FIG. 1. The modeled shapes of (a) snow and (b) graupel.

1 1, 1.4, 3, 5, 6.8, 6.925, 9, 10, 10.7, 13.4, 15, 18.7, 19, 19.35, 21.3,
22.234, 23.8, 24.1, 31.4, 35.6, 36.5, 37, 50, 50.3, 52.8, 53.506, 54.4,
54.94, 55.5, 57.29, 59.4, 60.0, 60.672, 63.283, 70, 75, 80, 85.5, 89, 90,
91.655, 94, 114.5, 115.95, 116.65, 117.8, 118, 150, 157, 166, 183.31,
190.31, 205, 220, 240, 243, 325, 325.15, 340, 380, 425, 448, 462, 487,
500, 640, 643, 664, 683, and 874 GHz.
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size measure that describes ice cloud bulk optical properties,
which is independent of particle size distribution details
(Wyser and Yang 1998):

reff 5

3
�Dmax

Dmin

V(D)N(D) dD

4
�Dmax

Dmin

A(D)N(D) dD
, (3)

where V(D) and A(D) are the volume and projected
cross-sectional area of the particles in the size interval D to
D 1 dD. The Dmin and Dmax are the low and upper limits of
D, respectively. As documented in Table 2, Dmin 5 2 mm and
Dmax 5 100 000 mm in the present snow database. However,
microphysics schemes often do not specify the snow particle
shape (Thompson et al. 2008) and hence cannot provide V(D)
and A(D) for the reff computation. The mean particle size
measure that microphysics schemes can provide is the ratio of
the third to the second moments of a given N(D):

reff,p 5

1
�Dmax

Dmin

D3N(D) dD

2
�Dmax

Dmin

D2N(D) dD
: (4)

We call reff,p, defined in Eq. (4), the effective radius parameter.
Bulk hydrometeor optical properties are precalculated at 10 reff,p
values in the MW in CRTM 2.4.0 (Stegmann et al. 2018), which
is adopted to test the present snow optical parameterization. If
the development of a snow bulk optical parameterization focuses
on its consistency with a microphysics scheme, then the snow
bulk optical properties should be computed at values of some
mean particle size measure that the microphysics scheme can
provide. Therefore, we compute the snow MW bulk optical
properties at the 10 reff,p values. The snow particle distribution of
Field et al. (2005) is adopted in the Thompson scheme:

N(D) 5 M4
2

M3
3

k0e
2(M2/M3)L0D 1 k1

M2

M3
D

( )ms

e2(M2/M3)L1D
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (5)

where k0 5 490.6, k1 5 17.46, L0 5 20.78, L1 5 3.29, ms 5

0.6357, andMn is the nth moment of the distribution. In the snow
bulk optical parameterization, the size distribution in Eq. (5) is

applied to our snow optical model satisfying the m–D relation in
Eq. (2), such that the derived snow bulk optical properties are
consistent with the Thompson microphysics scheme. First, N(D)
in Eq. (5) is normalized byM0:

M0 5

�‘

0
N(D) dD 5

M3
2

M2
3

k0
L0

1
k1

L
ms11
1

G(ms 1 1)
[ ]

5 25:84
M3

2

M2
3

, (6)

Nn(D) 5 N(D)
M0

5
1

51:68reff,p
k0e

2L0D/(2reff,p) 1 k1
D

2reff,p

( )ms

e2L1D/(2reff,p)
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,
(7)

where Nn(D) is the normalized snow particle size distribution.
Notice that reff,p5M3/2M2. Furthermore, snow bulk optical prop-
erties in the MW are derived withNn(D) and the single-scattering
properties of the snow model (e.g., Baum et al. 2005b; Hong et al.
2009a) at the 10 reff,p values of interest (Table 3):

bext,m 5

�Dmax

Dmin

Qext(D)A(D)Nn(D) dD

r0

�Dmax

Dmin

V(D)Nn(D) dD
, (8)

TABLE 2. Dimensions of the snow and graupel single-scattering database in this study.

Snow Graupel

Spectral range UV-IR (0.2–200 mm) MW (1–874 GHz) UV-IR (0.2–200 mm) MW (1–874 GHz)
Spectral resolution 470 wavelengths 70 frequencies 470 wavelengths 70 frequencies
Size range/resolution 131 sizes from 2 to 100 000 mm 70 sizes from 2 to 250 000 mm
Scheme 1) Constant bulk density of 0.1 g cm23,

2) m–D relation in Thompson et al. (2008),
3) m–D relation in Heymsfield et al. (2004), and
4) m–D relation in Brandes et al. (2007)

Five mass ratios of
0.1–0.9, with an
increment of 0.2

10 mass ratios from
0.1 to 1, with an
increment of 0.1

Refractive index At 266 K (Warren and
Brandt 2008)

At five temperatures 190,
210, 230, 250, and 270 K
(Iwabuchi and Yang
2011)

At 266 K (Warren
and Brandt 2008)

At five temperatures
190, 210, 230, 250,
and 270 K (Iwabuchi
and Yang 2011)

TABLE 3. The 10 reff,p values at which snow MW bulk optical
properties are computed and the corresponding reff values derived
from our Thompson-microphysics-scheme-consistent snow optical
model.

reff,p (mm) reff (mm)

5 3.43
15 9.82
30 19.30
50 31.95
100 60.72
300 114.56
500 136.85
800 155.84

1000 164.21
1500 178.02
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v 5

�Dmax

Dmin

v′(D)Qext(D)A(D)Nn(D) dD�Dmax

Dmin

Qext(D)A(D)Nn(D) dD
, (9)

g 5

�Dmax

Dmin

g′(D)v′(D)Qext(D)A(D)Nn(D) dD�Dmax

Dmin

v′(D)Qext(D)A(D)Nn(D) dD
; and (10)

p(Q) 5

�Dmax

Dmin

p′(D,Q)v′(D)Qext(D)A(D)Nn(D) dD�Dmax

Dmin

v′(D)Qext(D)A(D)Nn(D) dD
, (11)

where Q is scattering angle and r0 5 9.167 3 105 g m23 is the
density of solid ice. The associated reff values are also docu-
mented in Table 3. The d-fit method (Hu et al. 2000) is used
to truncate the phase function to reduce the number of the ex-
pansion coefficients required by the CRTM simulation. A
truncation angle of 108 is chosen to perform the d-fit truncation.
Given an reff,p input to CRTM, snow bulk optical properties at

this reff,p are obtained via interpolation in the CRTM
simulation.

3. Data and methods

High-frequency (.100 GHz) channels of MW instruments are
more sensitive to the scattering of snow particles than low-
frequency channels (Bennartz and Bauer 2003; Skofronick-
Jackson and Johnson 2011). Yin and Liu (2017) used the BT
measurements from the GPM Microwave Imager (GMI)
89 GHz and high-frequency channels to develop an a priori data-
base for snow retrievals over ocean, where the first guess SWC
profiles were retrieved from the collocated CPR observations.
With the CPR retrieved SWC profiles as the input parameters,
Yin and Liu (2019) performed radiation simulations and com-
pared simulated BTs with the measurements of the four
GMI high-frequency channels, 166 V, 166 H, 183 6 3 V, and
1836 7 V, where V andH indicate the vertical and horizontal po-
larization states. The collocated CPR and GPM Core Observatory
observations during March 2014–August 2016 are provided by a
CloudSat–GPM coincidence dataset (Turk et al. 2021), which is
adopted to test our microphysics-scheme-consistent snow bulk
optical parameterization at 230 K as in Yin and Liu (2019).Cloud-
Sat observations have been used to monitor global snowfall

FIG. 2. Bulk (a) mass extinction coefficients bext (m
2 kg21), (b) single-scattering albedos v, (c) asymmetry factors g,

and (d) similarity parameters s of the snow optical model in this study (blue) and the 6-branch bullet-rosette model in
Ding et al. (2017b) (orange) at 94 GHz and 230 K with the particle size distribution of Field et al. (2005).
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(Kulie et al. 2020) and validate the CRTM (Chen et al. 2008).
Based on the optimal estimation method, snowfall rate and SWC
profiles are retrieved using the CPR radar reflectivity and the a
priori knowledge of snow microphysical properties (Wood et al.
2013, 2014). This snow retrieval method has also been applied to
aircraftW-band radar reflectivity measurements (Heymsfield et al.
2016). CloudSat snow retrievals are saved in the 2C-SNOW-
PROFILE product, included in the CloudSat–GPM coincidence
dataset.

Within each GMI field of view (FOV), all the collocated
CPR rays are regarded as independent columns to perform
CRTM simulations as in Chen et al. (2008), and the average
of the simulated BTs is compared with the GMI observation.
Horizontal radiation transfer (Kummerow and Weinman 1988)
within the GMI FOV is therefore ignored in the BT computa-
tion. Each CPR ray has 125 vertical layers with layer heights of
about 240 m. The 2nd to the 104th layers (from top to bottom
above sea level) are input to the CRTM simulations, resulting
in a model top of the atmosphere near 25 km. In each
layer, pressure, temperature, and water vapor mass mixing
ratio are from the auxiliary ECWMF data included in the coin-
cidence dataset. The ozone volume mixing ratio is derived
from version 5 of the ECMWF atmospheric reanalysis

(ERA5; Hersbach et al. 2020) monthly mean ozone data. The
ERA5 ozone profile closest to each CPR ray is used to calcu-
late the ozone volume mixing ratios in the CPR layers via
spline interpolation. Above the freezing level, the solid hydro-
meteor is treated as snow, whose mass or second moment of
the size distribution M2 is described using the 2C-SNOW-
PROFILE SWC retrievals. In each layer, reff,p is estimated us-
ing reff,p 5 M3/(2M2), whereM3 is calculated using the relation
of the size distribution moments [Eqs. (C9)–(C11) in Thompson
et al. 2008]. The liquid hydrometeor is treated as rain, whose
mass is described using the 2C-RAIN-PROFILE (L’Ecuyer and
Stephens 2002; Lebsock and L’Ecuyer 2011; Mitrescu et al. 2010)
precipitation liquid water content (PLWC). The 2C-RAIN-
PROFILE data have been extensively used in warm rain studies
(e.g., Rapp 2016; Rapp et al. 2013; Sun et al. 2022). However, it
is difficult to estimate the rain effective radius, because the num-
ber concentration of rain droplets, often a prognostic of micro-
physics schemes, is unstated. Kobayashi (2007) showed a rain
droplet effective radius mode of 17 mm derived from TRMM
PR and visible and infrared scanner (VIRS) measurements,
although the largest droplet sizes might be underestimated due
to the observational limit. We simply set the rain effective radius
to a constant value of 20 mm in the CRTM simulations.

FIG. 3. CloudSat (a) 2B-GEOPROF (Marchand et al. 2008) radar reflectivity observations
(dBZ), (b) 2C-SNOW-PROFILE snow water content retrievals (g m23), (c) 2C-RAIN-
PROFILE precipitation liquid water content retrievals (g m23), and (d) collocated GMI bright-
ness temperature measurements (K) along the CPR ground track over the North Atlantic Ocean
on 18 Nov 2014.
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Previous studies showed that the assumptions involved in
computing snow single-scattering properties contribute to the
uncertainties of CloudSat snow retrievals (e.g., Hiley et al.
2011; Kulie and Bennartz 2009; Liu 2008a). For instance,
because backscattering cross sections of bullet-rosettes are
significantly smaller than those of columns of the same maxi-
mum dimension (Hong 2007a; Kulie and Bennartz 2009),
given the same radar reflectivity, a significantly higher snow
rate will be retrieved if snowflakes are assumed to be bullet-
rosettes than if they are assumed to be columns (Hiley et al.
2011). The shape of snowflakes in the 2C-SNOW-PROFILE
snow retrieval algorithm was selected based on the ground-
based 95-GHz profiling radar near-surface radar reflectivity
observations during the Canadian CloudSat/CALIPSO Vali-
dation Project (C3VP; Hudak et al. 2006). Among a few
snowflake shapes that satisfy retrieved m–D and horizontally
projected area (Ap)–D relations in Wood et al. (2015), the
8-branch bullet-rosette (8BR) showed the best agreement with
the 95-GHz radar near-surface reflectivity observations during
the C3VP and hence was adopted in the 2C-SNOW-PROFILE
snow retrieval algorithm. Although a single snowflake shape
was assumed in the snow retrieval algorithm, Wood et al.
(2015) suggested that the near-surface radar reflectivity could
also be produced via a combination of one snow shape at small

sizes and the other at large sizes, the method we adopt in de-
signing our snow optical model.

The extinction efficiency of columns is about 3–4 times as
large as that of bullet-rosettes of the same maximum dimen-
sion at 94 GHz (Ding et al. 2017b) and 340 GHz (Hong
2007b). If the 2C-SNOW-PROFILE SWC retrievals are di-
rectly used to perform CRTM simulations with our snow bulk
optical parameterization, the simulated BTs at the GMI high-
frequency channels will be greatly underestimated in high
SWC conditions (not shown). Kulie et al. (2010) also reported
negative 157-GHz BT biases of column ice optical models
when the BT simulations were based on the derived ice water
content ensemble from W-band radar reflectivity using differ-
ent ice optical models. In addition, passive MW solid hydro-
meteor retrievals are also sensitive to the particle shape
assumption (e.g., Evans and Stephens 1995a,b). However, Yin
and Liu (2019) reported smaller than 1–3-K biases between
simulated and observed GMI high-frequency BTs, when a
consistent snow optical model was used in both the forward
radiative transfer simulation and the radar retrieved snow de-
scription. To avoid the technical problems}such as radar atten-
uation, multiple scattering, surface clutter, and mixed phase
radar gate}in CPR snow retrievals, we choose not to perform
snow retrievals with our snow optical model by ourselves.

FIG. 4. Profiles of (a) snow water path (kg m22), (b) snow effective radius reff,p (mm), (c) cor-
rected snow effective radius rc,eff,p (mm), and (d) rainwater path (kg m22) for the CPR rays
whose collocated GMI FOVs have snow in Fig. 3.
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Instead, we first roughly estimate what snow reff,p is necessary
to produce a radiation field similar with the observed, if the pre-
sent snow optical model were used in the CPR snow retrievals.

Two scattering media have similar radiation fields if both
media have a conserved similarity parameter s defined as fol-
lows (van de Hulst 1974):

s 5












1 2 v

1 2 vg

√
: (12)

When s is conserved, the Moderate Resolution Imaging Spec-
troradiometer (MODIS) Collections 5 and 6 ice cloud optical
models (Baum et al. 2005a; Platnick et al. 2017) result in
highly agreeing reflectance calculations in MODIS band 7
(Ding et al. 2017a), the near-infrared band in MODIS ice
cloud reff retrievals over oceans. We want to find a corrected
snow effective radius parameter rc,eff,p such that the s of our
snow model at rc,eff,p is the same as that of the 2C-SNOW-
PROFILE 8BRmodel at reff,p at 94 GHz (W band). However,
the single-scattering properties of the 2C-SNOW-PROFILE
8BR model are not publicly accessible. Knowing that the sin-
gle-scattering properties of 6-branch and 8-branch bullet ro-
settes are similar (Aydin and Walsh 1999; Yang et al. 2004),

the 6BR model in Ding et al. (2017b) is used instead in cor-
recting the snow reff,p. The single-scattering properties of the
6BR model at 94 GHz are recalculated at the 189 sizes
adopted by our new snow database. The snow particle size dis-
tribution in the 2C-SNOW-PROFILE 8BR model is also not
publicly accessible. We therefore derive the 6BR model bulk
optical properties using Nn(D) in Eq. (7). Figure 2 shows a
comparison of the bulk optical properties of our snow model
and the 6BR model at 94 GHz and 230 K. The bext of our
snow model is nearly an order-of-magnitude greater than that
of the 6BR model when reff,p . 500 mm and smaller than that
of the 6BR model when reff,p , 100 mm (Fig. 2a). Our snow
model shows larger v and g than the 6BR model (Figs. 2b,c),
resulting in a large difference in s between the two models

FIG. 5. High-frequency channel brightness temperatures (K) from the CRTM simulations with
the new (black) and default (gray) snow optical parameterization schemes, matched GMI obser-
vations (dashed blue), and GMI observations 2 FOVs behind (blue) for the GMI FOVs that
have snow in Fig. 3.

TABLE 4. RMSEs and MBEs of the CRTM simulated BTs of
the four GMI high-frequency channels over the 265 147 clear-sky
GMI FOVs over ice-free oceans.

166 V 166 H 183 6 3 V 183 6 7 V

RMSE (K) 3.2 7.3 1.8 2.5
MBE (K) 20.6 24.1 0.0 1.1
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(Fig. 2d). Thus, with the variations of s with respect to reff,p of
the two models in Fig. 2d, rc,eff,p can be obtained by solving

s(rc,eff,p) 5 s6BR(reff,p), (13)

where s and s6BR are the similarity parameters of our snow
model and the 6BR model at 94 GHz and 230 K, respectively.

In the CRTM simulations, the default advanced doubling-
adding (ADA) solver (Liu and Weng 2006) is selected with
the number of streams (or Gaussian quadrature points) set to
8. The ADA solver also includes two additional streams at
the sensor viewing angle in the upper and lower hemispheres,
respectively, which, however, are not counted in the number
of streams. The viewing angles of the GMI low- and high-
frequency channels are 52.788 and 49.118 (Petty and Bennartz
2017). With the GMI orbit height of 407.16 km, the scan
(off-nadir) angles of the low- and high-frequency channels
are 48.468 and 45.288. The CRTM simulations include only
the GMI FOVs that have CPR snow retrievals over oceans,
the emissivity of which is described using the FAST micro-
wave Emissivity Model (FASTEM; Kazumori and English
2015; Liu et al. 2011) version 6. The monthly bootstrap sea
ice concentration data (Comiso 2017) are used to remove the
FOVs with sea ice. However, the influence of sea ice on the

CRTM simulations cannot be completely removed based on
the sea ice data. Therefore, we also include a comparison of
CRTM simulated and GMI observed BTs over the clear-sky
FOVs to quantify the sea ice influence not removed.

4. Results

a. A case over the North Atlantic Ocean

In the CRTM simulations, the snow description is based on
CloudSat observations. Figure 3 shows the collocated CPR
and GMI observations along a CPR ground track segment
over the North Atlantic Ocean on 18 November 2014. In the
northern portion of the segment, deep convective cores are
detected by the CPR with significant radar reflectivity reach-
ing 6 km (Fig. 3a). Within the deep convective cores, CPR
snow retrievals are above 1 km with maximum retrieved
SWCs between 3 and 5 km (Fig. 3b). Hydrometeors in the
CloudSat bins are treated as snow and rain and described us-
ing the SWC and PLWC retrievals, respectively. As shown in
Figs. 3c and 3d, relative to the adjacent clear-sky areas, liquid
precipitation enhances the BTs of GMI low-frequency
(i.e., 10.6 V, 10.6 H, 18.7 V, 18.7 H, 23 V, 37 V, 37 H, 89 V,
and 89 H) channels because of emission from liquid

FIG. 6. Scatterplots of the observed vs simulated BTs of the four GMI high-frequency channels for all of the 70800 se-
lected ice-free oceanic GMI FOVs. Color shows the occurrence frequency in each 2.5-K bin.
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(Kummerow and Weinman 1988; Wilheit et al. 1977). As shown
in Figs. 3b and 3d, the scattering of snowflakes reduces the BTs
of GMI high-frequency channels. However, a time offset up to
15 min exists between collocated CPR and GMI observations in
the coincidence dataset (Turk et al. 2021). For the selected case
shown in Fig. 3, the time offset is 560 s. In Fig. 3, the GMI high-
frequency channel BT minima do not exactly overlap with the
CPR SWC maxima, suggestive of movement of the detected
storms during the 560-s period.

The GMI FOVs with CPR snow retrievals are used to test
our microphysics-scheme-consistent snow bulk optical param-
eterization via CRTM simulations. Figure 4 shows the snow
mass and size and rain mass profiles for CRTM simulations
using the CPR rays within the GMI FOVs that have snow in
Fig. 3. In each CloudSat bin, the snow water path (SWP) is
the product of the SWC retrieval and the bin thickness; the
rainwater path is the product of the PLWC retrieval and
the bin thickness. The rainwater paths are generally small and
below 0.1 kg m22 with the exceptions in the CPR rays that
also have large SWPs around 600 hPa (Figs. 4a,d). The esti-
mated snow reff,p and rc,eff,p generally decrease with height
(Figs. 4b,c). Snow rc,eff,p is smaller than reff,p (Figs. 4b,c) as
expected (Fig. 2d). Not shown in Fig. 4 is the assumed cons-
tant raindrop effective radius of 20 mm, as previously men-
tioned in section 3.

Figure 5 compares the CRTM simulated and observed BTs
for the GMI high-frequency channels. It appears that the
CRTM simulated BTs agree better with the GMI observa-
tions 2 FOVs behind than at the matched GMI observations
(Fig. 5). The result suggests that the frozen hydrometeors as-
sociated with the detected storms move about 2 GMI FOVs
during the 560-s time offset between the collocated CPR and
GMI observations. Mismatches between the atmospheric
states observed by CPR and GMI also occurred because of
the different view angles of the two instruments. We therefore
compare the GMI observations up to 4 FOVs ahead and be-
hind the matched ones in each 15-min coincidence data
segment with the CRTM simulations and identify the obser-
vations that agree best with the simulated 166 V BTs in terms
of the root-mean-square error (RMSE). Among the 4 GMI
high-frequency channels, the 166 V channel is most sensitive
to scattering by snow in the lower and middle troposphere
(Yin and Liu 2019). The best agreeing 166 V observation
matchups are then used to examine CRTM simulations for all
selected cases. The matchups for the clear-sky comparison of
CRTM simulated and GMI observed BTs are found in the same
way. In addition, the default CRTM snowMW optical properties
are computed based on the Lorenz-Mie theory; snow particles
are assumed to be spheres with a density of 400 kg m23 and sat-
isfy a modified gamma size distribution (Geer et al. 2018). Given

FIG. 7. As in Fig. 6, but for the 57 991 ice-free oceanic GMI FOVs that have no heavy rain.
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the same reff,p, the mass extinction coefficient of the new snow
optical parameterization is significantly higher than that of the
default one (not shown). As a result, the CRTM simulated BTs
with the default snow parameterization are consistently higher
than those with the new snow parameterization; the 166 V and
166 H BT differences reach near 45 K over the deep convective
core in the 53rd GMI FOV (Fig. 5). In the rest of this study, only
the CRTM simulation results with the new snow parameteriza-
tion are shown.

b. All cases over the global oceans

Table 4 documents the simulated clear-sky BT RMSEs and
mean bias errors (MBEs) of the 4 GMI high-frequency chan-
nels. The 166 H channel shows a clear-sky BT RMSE of 7.3 K
(Table 4). Yin and Liu (2019) report the largest clear-sky BT
error standard deviation of the 166 H channel among the four
GMI high-frequency channels using the same CloudSat–GPM
coincidence dataset. Sea ice rarely occurs between 408N and
408S. If only the ice-free oceanic clear-sky FOVs between
408N and 408S are kept, the 166 H BT RMSE reduces from
7.3 to 4.8 K and mean bias error (MBE) increases from 24.1
to 21.5 K, although the BT RMSEs and MBEs of the other
three channels almost do not change (not shown). The more
accurate clear-sky 166 V BT simulation between 408N and
408S suggests that the sea ice influence on this channel is not

completely removed with the help of the monthly bootstrap
sea ice concentration data. Based on all 70 800 GMI ice-free
oceanic FOVs with snow selected for the CRTM simulations,
the simulated high-frequency channel BTs have RMSEs of
7.9, 14.4, 3.9, and 6.0 K, respectively (Fig. 6), smaller than the
reported 20 K first guess departures in the all-sky data assimi-
lation (Geer and Bauer 2011). If the heavy-rain FOVs are re-
moved by excluding the cases whose mean column rainwater
paths are greater than 0.1 kg m22, the RMSEs decrease to 5.5,
13.4, 2.8, and 4.3 K, respectively (Fig. 7). The 0.1 kg m22 rain-
water path is the 59th percentile for the 31 587 FOVs that
have liquid precipitation. The result suggests that the constant
20-mm rain effective radius assumption may be problematic
for heavy-rain situations. Relative to the Global Precipitation
Climatology Project (GPCP; Huffman et al. 2009) data, the
CloudSat 2C-RAIN-PROFILE underestimates the rainfall
over the convergence regions in the southeastern Pacific
Ocean, because the heavy rainfall associated with deep con-
vection is likely to saturate the CPR signal (Rapp et al. 2013).
Presumably, the CPR signal saturation also contributes to the
increased BT uncertainties for the heavy-rain cases in the
CRTM simulations in this study.

Let BT relative error be the difference between simulated
and observed BTs divided by the simulated BT. Figure 8
shows the mean BT relative errors in different mean column

FIG. 8. Mean relative errors of the simulated GMI high-frequency BTs in different mean column SWP intervals for
the no-heavy-rain ice-free oceanic GMI FOVs. The error bars mark the standard deviations.
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SWP intervals. When the mean column SWP is greater than
1 kg m22, the CRTM simulations significantly overestimate
the GMI high-frequency BTs (Fig. 8), presumably due to ra-
dar signal saturation as in the heavy-rain situations. Relative
to the Multi-Radar Multi-Sensor (MRMS) system observa-
tions (Zhang et al. 2016), the 2C-SNOW-PROFILE underes-
timates snowfall rates in heavy-snow situations (Cao et al.
2014; Mroz et al. 2021). The 1 kg m22 mean column SWP is
the 98th percentile for the 57 991 FOVs that have no heavy
rain. If the heavy-snow cases that have SWPs greater than
1 kg m22 are removed from the no-heavy-rain FOVs, the re-
maining no-heavy-rain-or-snow FOVs sum to 56 645. As
shown in Fig. 9a, most of the no-heavy-rain-or-snow sam-
ples are over the extratropics. The median SWP is highest
between 08 and 208N and lowest between 408 and 208S dur-
ing the period (Fig. 9b). The mean relative errors of the sim-
ulated BTs over the no-heavy-rain-or-snow ice-free oceanic
GMI FOVs are generally closer to 0 over the middle and
high latitudes than over the tropics (Fig. 10). The northern
and southern boundaries of the GMI FOVs in the coinci-
dence dataset are about 698N and 698S, respectively. The
CRTM BT overestimation shown in Fig. 10 may be suggestive
of a SWC underestimation over the tropics, although the BT
overestimation may also result from other unknown uncertainty
sources. Perhaps, the quality of the 2C-SNOW-PROFILE snow
retrievals varies with latitude. While numerous studies have
evaluated the 2C-SNOW-PROFILE snow retrievals over mid-
dle and high latitudes (e.g., Cao et al. 2014; Chen et al. 2016;
Matrosov 2019; Mroz et al. 2021; Norin et al. 2015; Souverijns
et al. 2018), evaluations over the tropics are scarce. If attenua-
tion and multiple scattering are ignored, lack of prior knowledge
of the snow size distribution parameters is believed to be the

greatest uncertainty source of the W-band radar snow mass
retrievals (Wood and L’Ecuyer 2021). With the tropical
cases between 208N and 208S farther removed from the
FOVs with no heavy rain or snow, the resulting 55 821 sam-
ples have simulated high-frequency BT RMSEs reduced to
4.3, 13.0, 1.8, and 3.3 K, respectively; the BT MBEs of the
samples are 20.4, 28.7, 0.6, and 2.0 K, respectively. The
agreement between the CRTM simulated and GMI observed
BTs suggests the potential of applying our microphysics-
scheme-consistent snow optical parameterization in all-sky
data assimilations.

5. Conclusions

The data assimilation community requires consistency in the
assumed hydrometeor m–D relation and the particle size distri-
bution between the forecast model and observation operator.
Motivated by this requirement, we developed a microphysics-
scheme-consistent snow and graupel single-scattering database.
In this database, snowflakes are assumed to be a mixture of ran-
domly oriented hexagonal columns and dendrite aggregates
with an equal number of mirror-imaging orientations, the mixing
ratios of which can be adjusted to satisfy a givenm–D relation in
each particle size range. Snow assumptions in the Thompson mi-
crophysics scheme are then used to illustrate how microphysics-
scheme-consistent snow bulk optical properties may be derived.
Furthermore, the Thompson-scheme-consistent snow bulk opti-
cal parameterization in the MW is incorporated into CRTM
2.4.0 for a test. With the CPR snow and liquid precipitation
retrievals as the input, the CRTMwith the new snow parameter-
ization is used to simulate BTs of the collocated GMI 4 high-
frequency channels 166 V, 166 H, 183 6 3 V, and 183 6 7 V.
The simulated 166 V, 183 6 3 V, and 183 6 7 V BTs show
RMSEs smaller than 5 K over the global extratropical and polar
ice-free oceans, if heavy-rain and heavy-snow cases are excluded
because of possible radar signal saturation. However, the 166 H
channel shows a BT RMSE of 13 K. A large portion of the out-
liers do not appear to be near the known sea ice (not shown).
Hence, the 166 H channel uncertainty is presumably due to
the mismatches between the atmospheric states observed by
CPR and GMI. Among the four channels, the 166 H also
has the largest BT RMSE of 7.3 K in the clear-sky condition
(Table 4). In addition, the 166 H channel BT is thought to
be sensitive to atmospheric liquid precipitation emission
(Yin and Liu 2019), which can mask the snow scattering sig-
nal (Liu and Seo 2013; Wang et al. 2013). In the CRTM sim-
ulations in this study, the 2C-RAIN-PROFILE PLWC is
used to describe the liquid water content that contributes to
the signals of the 4 GMI high-frequency channels. The
166 H BT underestimation in this study (Figs. 6b–8b) may
be due to the underestimation of the liquid water content
underneath snow by the 2C-RAIN-PROFILE PLWC. In
this study, randomly orientated particles are assumed in the
new snow model and hydrometeor polarization is not in-
cluded in the CRTM 2.4.0 radiative solver. The lack of parti-
cle orientation and polarization may contribute to the
simulation errors at 166 GHz. The agreement between the
GMI high-frequency BT simulations and observations

FIG. 9. (a) Latitude distribution of the 56 645 ice-free oceanic
GMI FOVs that have no heavy rain or snow. (b) Boxplots of the
logarithm base 10 of the mean column SWPs of the samples in dif-
ferent latitude belts. The red lines and pluses mark the medians
and outliers, respectively. The box top and bottom edges mark the
75th and 25th percentiles, respectively. The whiskers extend to the
extremes.
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suggests the possibility of all-sky data assimilation applica-
tions of our microphysics-scheme-consistent snow and
graupel database. In the future, the new snow optical pa-
rameterization will be tested within the framework of a nu-
merical weather prediction model. In this study, only snow
bulk optical properties at 230 K are tested. The optical
properties at other temperatures available in this database
will be examined in future studies. In addition, melted and
dry snow particles show distinct scattering and extinction
properties (Johnson et al. 2016). The influence of melting is
not considered in our snow optical model. Future studies
will investigate whether the dry snow optical model may be
replaced by a melted snow optical model in the melting
layer in radar snow retrievals and MW imager signal
simulations.
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FIG. 10. Mean relative errors of the simulated GMI high-frequency BTs in different latitudinal belts for the no-heavy-
rain-or-snow ice-free oceanic GMI FOVs. The error bars mark the standard deviations.
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T. Nousiainen, 2012: Evidence of nonspheroidal behavior in
millimeter-wavelength radar observations of snowfall. J. Geo-
phys. Res., 117, D18205, https://doi.org/10.1029/2012JD017680.

Liu, C., P. Yang, P. Minnis, N. Loeb, S. Kato, A. Heymsfield, and
C. Schmitt, 2014: A two-habit model for the microphysical
and optical properties of ice clouds. Atmos. Chem. Phys., 14,
13 719–13 737, https://doi.org/10.5194/acp-14-13719-2014.

Liu, G., 2004: Approximation of single scattering properties of ice
and snow particles for high microwave frequencies. J. Atmos.
Sci., 61, 2441–2456, https://doi.org/10.1175/1520-0469(2004)
061,2441:AOSSPO.2.0.CO;2.

}}, 2008a: A database of microwave single-scattering properties
for nonspherical ice particles. Bull. Amer. Meteor. Soc., 89,
1563–1570, https://doi.org/10.1175/2008BAMS2486.1.

}}, 2008b: Deriving snow cloud characteristics from CloudSat
observations. J. Geophys. Res., 113, D00A09, https://doi.org/
10.1029/2007JD009766.

}}, and E.-K. Seo, 2013: Detecting snowfall over land by satel-
lite high-frequency microwave observations: The lack of scat-
tering signature and a statistical approach. J. Geophys. Res.
Atmos., 118, 1376–1387, https://doi.org/10.1002/jgrd.50172.

Liu, Q., and F. Weng, 2006: Advanced doubling–adding method
for radiative transfer in planetary atmospheres. J. Atmos.
Sci., 63, 3459–3465, https://doi.org/10.1175/JAS3808.1.

}}, }}, and S. J. English, 2011: An improved fast microwave
water emissivity model. IEEE Trans. Geosci. Remote Sens.,
49, 1238–1250, https://doi.org/10.1109/TGRS.2010.2064779.

Loeb, N. G., and Coauthors, 2018: Impact of ice cloud microphys-
ics on satellite cloud retrievals and broadband flux radiative
transfer model calculations. J. Climate, 31, 1851–1864, https://
doi.org/10.1175/JCLI-D-17-0426.1.

Lu, Q., and Coauthors, 2020: Monitoring the performance of the
Fengyun satellite instruments using radiative transfer models
and NWP fields. J. Quant. Spectrosc. Radiat. Transfer, 255,
107239, https://doi.org/10.1016/j.jqsrt.2020.107239.

R E N E T AL . 399FEBRUARY 2023

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/19/23 06:27 PM UTC

https://doi.org/10.1029/2009GL040000
https://doi.org/10.1029/2009GL040000
https://doi.org/10.1016/j.jqsrt.2011.06.017
https://doi.org/10.1029/2011JD017237
https://doi.org/10.1364/AO.27.004861
https://doi.org/10.1364/AO.27.004861
https://doi.org/10.1175/JAMC-D-11-0138.1
https://doi.org/10.1175/JAMC-D-11-0138.1
https://doi.org/10.5194/amt-9-9-2016
https://doi.org/10.1002/qj.2445
https://doi.org/10.1002/qj.2445
https://doi.org/10.1029/2005JD006892
https://doi.org/10.1175/JAM2483.1
https://doi.org/10.1029/2010JD015430
https://doi.org/10.1029/2007GL029606
https://doi.org/10.1029/2007GL029606
https://doi.org/10.1175/2009JAMC2193.1
https://doi.org/10.1175/2010JAS3520.1
https://doi.org/10.1029/JD093iD04p03720
https://doi.org/10.1109/36.536538
https://doi.org/10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2
https://doi.org/10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2
https://doi.org/10.1175/1520-0450(2001)040<1965:TSOTTR>2.0.CO;2
https://doi.org/10.1175/1520-0450(2001)040<1965:TSOTTR>2.0.CO;2
https://doi.org/10.1175/1520-0450(2001)040<1801:TEOTGP>2.0.CO;2
https://doi.org/10.1175/1520-0450(2001)040<1801:TEOTGP>2.0.CO;2
https://doi.org/10.1175/JAMC-D-15-0130.1
https://doi.org/10.1175/JAMC-D-15-0130.1
https://doi.org/10.1029/2011JD016076
https://doi.org/10.1029/2011JD016076
https://doi.org/10.1175/1520-0450(2002)041<0272:AEBPRA>2.0.CO;2
https://doi.org/10.1175/1520-0450(2002)041<0272:AEBPRA>2.0.CO;2
https://doi.org/10.1029/2012JD017680
https://doi.org/10.5194/acp-14-13719-2014
https://doi.org/10.1175/1520-0469(2004)061<2441:AOSSPO>2.0.CO;2
https://doi.org/10.1175/1520-0469(2004)061<2441:AOSSPO>2.0.CO;2
https://doi.org/10.1175/2008BAMS2486.1
https://doi.org/10.1029/2007JD009766
https://doi.org/10.1029/2007JD009766
https://doi.org/10.1002/jgrd.50172
https://doi.org/10.1175/JAS3808.1
https://doi.org/10.1109/TGRS.2010.2064779
https://doi.org/10.1175/JCLI-D-17-0426.1
https://doi.org/10.1175/JCLI-D-17-0426.1
https://doi.org/10.1016/j.jqsrt.2020.107239


Lu, Y., Z. Jiang, K. Aydin, J. Verlinde, E. E. Clothiaux, and G.
Botta, 2016: A polarimetric scattering database for non-
spherical ice particles at microwave wavelengths. Atmos.
Meas. Tech., 9, 5119–5134, https://doi.org/10.5194/amt-9-5119-
2016.

Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day
oscillation in the zonal wind in the tropical Pacific. J. Atmos.
Sci., 28, 702–708, https://doi.org/10.1175/1520-0469(1971)028
,0702:DOADOI.2.0.CO;2.

}}, and }}, 1972: Description of global-scale circulation cells
in the tropics with a 40–50 day period. J. Atmos. Sci., 29,
1109–1123, https://doi.org/10.1175/1520-0469(1972)029,1109:
DOGSCC.2.0.CO;2.

Marchand, R., G. G. Mace, T. Ackerman, and G. Stephens, 2008:
Hydrometeor detection using CloudSat}An Earth-orbiting
94-GHz cloud radar. J. Atmos. Oceanic Technol., 25, 519–
533, https://doi.org/10.1175/2007JTECHA1006.1.

Masunaga, H., M. Satoh, and H. Miura, 2008: A joint satellite and
global cloud-resolving model analysis of a Madden–Julian os-
cillation event: Model diagnosis. J. Geophys. Res., 113,
D17210, https://doi.org/10.1029/2008JD009986.

}}, and Coauthors, 2010: Satellite data simulator unit: A multisen-
sor, multispectral satellite simulator package. Bull. Amer. Meteor.
Soc., 91, 1625–1632, https://doi.org/10.1175/2010BAMS2809.1.

Matrosov, S. Y., 2007: Modeling backscatter properties of snowfall
at millimeter wavelengths. J. Atmos. Sci., 64, 1727–1736,
https://doi.org/10.1175/JAS3904.1.

}}, 2019: Comparative evaluation of snowfall retrievals from
the CloudSat W-band radar using ground-based weather ra-
dars. J. Atmos. Oceanic Technol., 36, 101–111, https://doi.org/
10.1175/JTECH-D-18-0069.1.

}}, and A. Battaglia, 2009: Influence of multiple scattering on
CloudSat measurements in snow: A model study. Geophys.
Res. Lett., 36, L12806, https://doi.org/10.1029/2009GL038704.

}}, M. D. Shupe, and I. V. Djalalova, 2008: Snowfall retrievals
using millimeter-wavelength cloud radars. J. Appl. Meteor. Cli-
matol., 47, 769–777, https://doi.org/10.1175/2007JAMC1768.1.

Matsui, T., X. Zeng, W.-K. Tao, H. Masunaga, W. S. Olson, and
S. Lang, 2009: Evaluation of long-term cloud-resolving model
simulations using satellite radiance observations and multifre-
quency satellite simulators. J. Atmos. Oceanic Technol., 26,
1261–1274, https://doi.org/10.1175/2008JTECHA1168.1.

}}, and Coauthors, 2013: GPM satellite simulator over ground
validation sites. Bull. Amer. Meteor. Soc., 94, 1653–1660,
https://doi.org/10.1175/BAMS-D-12-00160.1.

}}, and Coauthors, 2014: Introducing multisensor satellite radi-
ance-based evaluation for regional Earth system modeling. J.
Geophys. Res. Atmos., 119, 8450–8475, https://doi.org/10.1002/
2013JD021424.

Mitrescu, C., T. L’Ecuyer, J. Haynes, S. Miller, and J. Turk, 2010:
CloudSat precipitation profiling algorithm}Model descrip-
tion. J. Appl. Meteor. Climatol., 49, 991–1003, https://doi.org/
10.1175/2009JAMC2181.1.

Mroz, K., M. Montopoli, A. Battaglia, G. Panegrossi, P. Kirstetter,
and L. Baldini, 2021: Cross validation of active and passive
microwave snowfall products over the continental United
States. J. Hydrometeor., 22, 1297–1315, https://doi.org/10.
1175/JHM-D-20-0222.1.

Norin, L., A. Devasthale, T. L’Ecuyer, N. B. Wood, and M.
Smalley, 2015: Intercomparison of snowfall estimates derived
from the CloudSat cloud profiling radar and the ground-
based weather radar network over Sweden. Atmos. Meas.
Tech., 8, 5009–5021, https://doi.org/10.5194/amt-8-5009-2015.

Nowell, H., G. Liu, and R. Honeyager, 2013: Modeling the micro-
wave single-scattering properties of aggregate snowflakes. J.
Geophys. Res. Atmos., 118, 7873–7885, https://doi.org/10.1002/
jgrd.50620.

Olson, W. S., and Coauthors, 2016: The microwave radiative prop-
erties of falling snow derived from nonspherical ice particle
models. Part II: Initial testing using radar, radiometer and in
situ observations. J. Appl. Meteor. Climatol., 55, 709–722,
https://doi.org/10.1175/JAMC-D-15-0131.1.

Ori, D., L. von Terzi, M. Karrer, and S. Kneifel, 2021: snowscatt
1.0: Consistent model of microphysical and scattering proper-
ties of rimed and unrimed snowflakes based on the self-simi-
lar Rayleigh–Gans approximation. Geosci. Model Dev., 14,
1511–1531, https://doi.org/10.5194/gmd-14-1511-2021.

Otkin, J. A., T. J. Greenwald, J. Sieglaff, and H.-L. Huang, 2009:
Validation of a large-scale simulated brightness temperature da-
taset using SEVIRI satellite observations. J. Appl. Meteor. Cli-
matol., 48, 1613–1626, https://doi.org/10.1175/2009JAMC2142.1.

Petty, G. W., and W. Huang, 2010: Microwave backscatter and ex-
tinction by soft ice spheres and complex snow aggregates. J. At-
mos. Sci., 67, 769–787, https://doi.org/10.1175/2009JAS3146.1.

}}, and R. Bennartz, 2017: Field-of-view characteristics and res-
olution matching for the Global Precipitation Measurement
(GPM) Microwave Imager (GMI). Atmos. Meas. Tech., 10,
745–758, https://doi.org/10.5194/amt-10-745-2017.

Platnick, S., and Coauthors, 2017: The MODIS cloud optical and
microphysical products: Collection 6 updates and examples
from Terra and Aqua. IEEE Trans. Geosci. Remote Sens., 55,
502–525, https://doi.org/10.1109/TGRS.2016.2610522.

Pruppacher, H. R., and J. D. Klett, 2010: Microphysics of Clouds
and Precipitation. 2nd ed. Springer, 954 pp.

Qu, Z., and Coauthors, 2018: Evaluation of a high-resolution nu-
merical weather prediction model’s simulated clouds using
observations from CloudSat, GOES-13 and in situ aircraft.
Quart. J. Roy. Meteor. Soc., 144, 1681–1694, https://doi.org/10.
1002/qj.3318.

Rapp, A. D., 2016: Observational evidence linking precipitation
and mesoscale cloud fraction in the southeast Pacific. Geo-
phys. Res. Lett., 43, 7267–7273, https://doi.org/10.1002/
2016GL069906.

}}, M. Lebsock, and T. L’Ecuyer, 2013: Low cloud precipitation
climatology in the southeastern Pacific marine stratocumulus
region using CloudSat. Environ. Res. Lett., 8, 014027, https://
doi.org/10.1088/1748-9326/8/1/014027.

Ren, T., D. Li, J. Muller, and P. Yang, 2021: Sensitivity of radia-
tive flux simulations to ice cloud parameterization over the
equatorial western Pacific Ocean region. J. Atmos. Sci., 78,
2549–2571, https://doi.org/10.1175/JAS-D-21-0017.1.

Saunders, R., and Coauthors, 2018: An update on the RTTOV
fast radiative transfer model (currently at version 12). Geosci.
Model Dev., 11, 2717–2737, https://doi.org/10.5194/gmd-11-
2717-2018.

Sieron, S. B., E. E. Clothiaux, F. Zhang, Y. Lu, and J. A. Otkin,
2017: Comparison of using distribution-specific versus effective
radius methods for hydrometeor single-scattering properties for
all-sky microwave satellite radiance simulations with different
microphysics parameterization schemes. J. Geophys. Res. At-
mos., 122, 7027–7046, https://doi.org/10.1002/2017JD026494.

}}, F. Zhang, E. E. Clothiaux, L. N. Zhang, and Y. Lu, 2018:
Representing precipitation ice species with both spherical and
nonspherical particles for radiative transfer modeling of
microphysics-consistent cloud microwave scattering properties.

MONTHLY WEATHER REV I EW VOLUME 151400

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/19/23 06:27 PM UTC

https://doi.org/10.5194/amt-9-5119-2016
https://doi.org/10.5194/amt-9-5119-2016
https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2
https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2
https://doi.org/10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2
https://doi.org/10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2
https://doi.org/10.1175/2007JTECHA1006.1
https://doi.org/10.1029/2008JD009986
https://doi.org/10.1175/2010BAMS2809.1
https://doi.org/10.1175/JAS3904.1
https://doi.org/10.1175/JTECH-D-18-0069.1
https://doi.org/10.1175/JTECH-D-18-0069.1
https://doi.org/10.1029/2009GL038704
https://doi.org/10.1175/2007JAMC1768.1
https://doi.org/10.1175/2008JTECHA1168.1
https://doi.org/10.1175/BAMS-D-12-00160.1
https://doi.org/10.1002/2013JD021424
https://doi.org/10.1002/2013JD021424
https://doi.org/10.1175/2009JAMC2181.1
https://doi.org/10.1175/2009JAMC2181.1
https://doi.org/10.1175/JHM-D-20-0222.1
https://doi.org/10.1175/JHM-D-20-0222.1
https://doi.org/10.5194/amt-8-5009-2015
https://doi.org/10.1002/jgrd.50620
https://doi.org/10.1002/jgrd.50620
https://doi.org/10.1175/JAMC-D-15-0131.1
https://doi.org/10.5194/gmd-14-1511-2021
https://doi.org/10.1175/2009JAMC2142.1
https://doi.org/10.1175/2009JAS3146.1
https://doi.org/10.5194/amt-10-745-2017
https://doi.org/10.1109/TGRS.2016.2610522
https://doi.org/10.1002/qj.3318
https://doi.org/10.1002/qj.3318
https://doi.org/10.1002/2016GL069906
https://doi.org/10.1002/2016GL069906
https://doi.org/10.1088/1748-9326/8/1/014027
https://doi.org/10.1088/1748-9326/8/1/014027
https://doi.org/10.1175/JAS-D-21-0017.1
https://doi.org/10.5194/gmd-11-2717-2018
https://doi.org/10.5194/gmd-11-2717-2018
https://doi.org/10.1002/2017JD026494


J. Adv. Model. Earth Syst., 10, 1011–1028, https://doi.org/10.
1002/2017MS001226.

Skofronick-Jackson, G., and B. T. Johnson, 2011: Surface and at-
mospheric contributions to passive microwave brightness
temperatures for falling snow events. J. Geophys. Res., 116,
D02213, https://doi.org/10.1029/2010JD014438.

Souverijns, N., and Coauthors, 2018: Evaluation of the CloudSat
surface snowfall product over Antarctica using ground-based
precipitation radars. Cryosphere, 12, 3775–3789, https://doi.
org/10.5194/tc-12-3775-2018.

Stegmann, P. G., G. Tang, P. Yang, and B. T. Johnson, 2018: A
stochastic model for density-dependent microwave snow- and
graupel scattering coefficients of the NOAA JCSDA commu-
nity radiative transfer model. J. Quant. Spectrosc. Radiat.
Transfer, 211, 9–24, https://doi.org/10.1016/j.jqsrt.2018.02.026.

Stephens, G. L., and Coauthors, 2002: The CloudSat mission and
the A-Train: A new dimension of space-based observations
of clouds and precipitation. Bull. Amer. Meteor. Soc., 83,
1771–1790, https://doi.org/10.1175/BAMS-83-12-1771.

Su, H., and Coauthors, 2013: Diagnosis of regime-dependent
cloud simulation errors in CMIP5 models using “A-Train”
satellite observations and reanalysis data. J. Geophys. Res.
Atmos., 118, 2762–2780, https://doi.org/10.1029/2012JD018575.

Sun, L., A. D. Rapp, T. S. L’Ecuyer, A. S. Daloz, and E. Nelson,
2022: Environmental response in coupled energy and water
cloud impact parameters derived from A-Train satellite,
ERA-Interim, and MERRA-2. J. Appl. Meteor. Climatol., 61,
261–276, https://doi.org/10.1175/JAMC-D-21-0078.1.

Tanelli, S., and Coauthors, 2008: CloudSat’s cloud profiling radar
after two years in orbit: Performance, calibration, and proc-
essing. IEEE Trans. Geosci. Remote Sens., 46, 3560–3573,
https://doi.org/10.1109/TGRS.2008.2002030.

Tang, G., P. Yang, P. G. Stegmann, R. L. Panetta, L. Tsang, and
B. Johnson, 2017: Effect of particle shape, density, and inho-
mogeneity on the microwave optical properties of graupel
and hailstones. IEEE Trans. Geosci. Remote Sens., 55, 6366–
6378, https://doi.org/10.1109/TGRS.2017.2726994.

Thompson, G., and T. Eidhammer, 2014: A study of aerosol im-
pacts on clouds and precipitation development in a large win-
ter cyclone. J. Atmos. Sci., 71, 3636–3658, https://doi.org/10.
1175/JAS-D-13-0305.1.

}}, R. M. Rasmussen, and K. Manning, 2004: Explicit forecasts
of winter precipitation using an improved bulk microphysics
scheme. Part I: Description and sensitivity analysis. Mon.
Wea. Rev., 132, 519–542, https://doi.org/10.1175/1520-0493
(2004)132,0519:EFOWPU.2.0.CO;2.

}}, P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Ex-
plicit forecasts of winter precipitation using an improved bulk
microphysics scheme. Part II: Implementation of a new snow
parameterization. Mon. Wea. Rev., 136, 5095–5115, https://
doi.org/10.1175/2008MWR2387.1.

}}, M. Tewari, K. Ikeda, S. Tessendorf, C. Weeks, J. Otkin, and
F. Kong, 2016: Explicitly-coupled cloud physics and radiation
parameterizations and subsequent evaluation in WRF high-
resolution convective forecasts. Atmos. Res., 168, 92–104,
https://doi.org/10.1016/j.atmosres.2015.09.005.

Turk, F. J., and Coauthors, 2021: Applications of a CloudSat–
TRMM and CloudSat–GPM satellite coincidence dataset. Re-
mote Sens., 13, 2264, https://doi.org/10.3390/rs13122264.
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